
Chapter 1

Sets and Notation

1.1 Defining sets

Definition. A set is an unordered collection of distinct objects. The objects in a
set are called the elements, or members, of the set. A set is said to contain its elements.

A set can be defined by simply listing its members inside curly braces. For example,
the set {2, 4, 17, 23} is the same as the set {17, 4, 23, 2}. To denote membership we
use the ∈ symbol, as in 4 ∈ {2, 4, 17, 23}. On the other hand, non-membership is
denoted as in 5 6∈ {2, 4, 17, 23}.

If we want to specify a long sequence that follows a pattern, we can use the ellipsis
notation, meaning “fill in, using the same pattern”. The ellipsis is often used after two
or more members of the sequence, and before the last one, as follows: {1, 2, . . . , n}.
The pattern denoted by the ellipsis should be apparent at first sight! For instance,
{1, . . . , n} is generally regarded as underspecified (that is, too ambiguous). Of course,
even {1, 2, . . . , n} is still ambiguous—did we mean all integers between 1 and n, all
powers of two up to n, or perhaps the set {1, 2, 25, n}?—but is generally sufficient,
unless you really do mean all powers of two up to n, in which case {20, 21, 22, . . . , 2k}
for an appropriate k is a better choice. The ellipsis can also be used to define an
infinite set, as in the following.

Definition. The set of natural numbers or nonnegative integers, denoted by N, is
defined as {0, 1, 2, . . .}.

To avoid ambiguities it is often useful to use the set builder notation, which lists
on the right side of the colon the property that any set element, specified on the left
side of the colon, has to satisfy. Let’s define the positive integers using the set builder
notation:

N+ = {x : x ∈ N and x > 0}.

We can also write

N+ = {x ∈ N : x > 0}.
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This is a matter of taste. In general, use the form that will be easiest for the reader
of your work to understand. Often it is the least “cluttered” one.

Ok, now onto the integers:

Z = {x : x ∈ N or −x ∈ N}.

Hmm, perhaps in this case it is actually better to write

Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

Remember, when you write mathematics, you should keep your readers’ perspective
in mind. For now, we—the staff of this course—are your readers. In the future it
might be your colleagues, supervisors, or the readers of your published work. In
addition to being reasonably formal and unambiguous, your mathematical writing
should be as clear and understandable to your intended readership as possible.

Here are the rational numbers:

Q =
{a

b
: a ∈ Z, b ∈ Z, b 6= 0

}
.

Instead of a ∈ Z, b ∈ Z, you can write a, b ∈ Z, which is more concise and generally
more readable. Don’t go overboard, though, with writing something like a, b 6= 0 ∈ Z,
this is way too confusing and does not say what you want it to.

Finally, the set of real numbers is denoted by R. All the reals that are not rational
are called irrational. These include the familiar π = 3.1415926..., e = 2.7182818...,√

2, and infinitely many others. (How do we know that these numbers are irrational,
do you ask? Actually, we will see a proof of this for

√
2 shortly. The proofs for π and

e require mathematical analysis and are outside our scope.)

On being formal. Were the above definitions formal enough? The answer is: it
depends. For example, defining the natural numbers is an important and non-trivial
accomplishment of mathematics. After all, what do these symbols “1”, “2”, “3”,
actually mean? These numbers can be formally defined in terms of sets. Even more
involved is the formal definition of the reals, usually covered in a first mathematical
analysis course.

Here we cannot afford to cover everything in complete detail, which would have to
include, among other things, basic algebra and trigonometry. Furthermore, the vast
majority of mathematical works, while considered to be “formal”, gloss over details
all the time. For example, you’ll be hard-pressed to find a mathematical paper that
goes through the trouble of justifying the equation a2 − b2 = (a− b)(a + b). In effect,
every mathematical paper or lecture assumes a shared knowledge base with its readers
or listeners. It is extremely important for an author of mathematics, such as yourself
during this course, to estimate this shared knowledge base correctly!

In CS103X we will assume most of high-school mathematics, including perhaps
some AP math like single-variable calculus, as our shared knowledge base. Thus
notions and techniques from this base will generally not be justified in lecture, and
can be used freely in your homework and exams. Furthermore, once we develop certain
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notation or prove some theorem in class, you can use these freely in your homework
and exams, provided that you clearly cite the appropriate theorems. In writing and
speaking mathematics, a delicate balance is maintained between being formal and
not getting bogged down in minutia.1 This balance usually becomes second-nature
with experience. You should all get the hang of it by the end of the quarter.

1.2 Set operations

A is said to be a subset of B if and only if every element of A is also an element of B,
in which case we write A ⊆ B. A is a strict subset of B if A is a subset of B and A is
not equal to B, which is denoted by A ⊂ B. For example, {4, 23} ⊂ {2, 4, 17, 23} ⊆
{2, 4, 17, 23}.

Two sets A and B are considered equal if and only if they have the same elements.
This is denoted by A = B. More formally, A = B if and only if A ⊆ B and B ⊆ A.

For two sets A and B, the operations of union, intersection, and difference are
defined as follows:

A ∪B = {x : x ∈ A or x ∈ B}
A ∩B = {x : x ∈ A and x ∈ B}
A \B = {x : x ∈ A and x 6∈ B}

The ∪ and ∩ notation can be extended to the union and intersection of multiple sets.
Given n sets A1, A2, . . . , An, we can write

n⋃
i=1

Ai

for their union, and
n⋂

i=1

Ai

for their intersection. In fact, this notation is pretty flexible and the same union can
be written as

n⋃
i=1

Ai =
⋃

1≤i≤n

Ai =
⋃

i∈{x : 1≤x≤n}

Ai.

Here is another example: ⋂
i ∈ {x : 1 ≤ x ≤ 10}

i is prime

Ai = A2 ∩ A3 ∩ A5 ∩ A7.

Given a set A, the cardinality of A, also known as the size of A, is simply the number
of elements in A. The cardinality of A is denoted by |A|. For example, if A =
{2, 4, 17, 23}, then |A| = 4.

1Of course, what is considered minutia differs from subfield to subfield, and from classroom to
classroom.
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1.3 More sets

The empty set is denoted by ∅. It is the unique set without elements. It holds that
∅ ⊆ A for any set A. Why? By definition, this holds if every element of ∅ is also an
element of A. Since ∅ has no elements, all possible statements about the elements of
∅ are true! In particular, all elements of ∅ are also elements of A. If this is confusing
don’t worry, we will go into such matters more rigorously when we get to logic. (For
now, you can ponder the following: If we know for a fact that there are no unicorns
<Gasp!>, then it is definitely true that all unicorns have soft light-blue fur.)

A set can contain sets as its elements. For example, {{2, 4}, {17}, 23} is a per-
fectly valid set with three elements, two of them sets. (The second element is
a singleton, a set with one element.) Note that {2, 4} ∈ {{2, 4}, {17}, 23}, but
{2, 4} ⊆ {2, 4, 17, 23}, and that 17 6∈ {{2, 4}, {17}, 23}, but {17} ∈ {{2, 4}, {17}, 23}.
Also, {∅} is not the empty set. (Think about it.)

The power set of a set A is the set of all subsets of A, and is denoted by 2A. That
is,

2A = {S : S ⊆ A}.

For example, for A = {2, 4, 17, 23}, we have

2A =

{
∅, {2}, {4}, {17}, {23}, {2, 4}, {2, 17}, {2, 23}, {4, 17}, {4, 23}, {17, 23},

{2, 4, 17}, {2, 4, 23}, {2, 17, 23}, {4, 17, 23}, {2, 4, 17, 23}
}

.

The cardinality of this set is 16, and 16 = 24. This is not a coincidence: As we shall
see when we get to combinatorics and counting, for a set A with n elements, the
cardinality of 2A is 2n. This is in fact the reason for the power set notation.
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